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Many-body Perturbation Theory for Open-shell
Systems. Expansion through Fourth-order
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All of the diagrams which arise in the many-body perturbation theory of
open-shell systems using a restricted Hartree-Fock reference function are
given through fourth-order in the energy. New effects which arise in fourth-
order are discussed.
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1. Introduction

Many-body perturbation theory has been shown to form a simple yet accurate
approach to the correlation problem in atoms and molecules [1-4]. For closed-
shell systems calculations taken through third-order in the energy yield an
accuracy comparable with that attained by other techniques currently used in
quantum chemistry. The basis set truncation error is usually more significant
than the error arising from the truncation of the perturbation series at third-order.
However, studies of closed-shell systems [5, 6] have demonstrated that the
fourth-order terms are often “‘chemically significant”, having a magnitude greater
than 1 millihartree. Third-order many-body perturbation theory calculations for
open-shell systems using a restricted Hartree-Fock formalism [7, 8] have been
shown to exhibit similar features to closed-shell studies. It is probable that,
although the basis set truncation error is dominant, fourth-order terms will be
“chemically significant’ in open-shell calculations.
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In this paper the fourth-order diagrams which arise in open-shell calculations
using a restricted Hartree—Fock reference function are given in full. We have
used a method of permutational analysis in order to obtain this set of diagrams.
A complete set of fourth-order diagrams for closed shell systems has been given
previously [5]. In the present paper we shall only give the additional diagrams
which arise when a restricted Hartree—Fock reference function is employed. The
diagrammatic conventions employed are described in detail in Ref. [3] where
the rules for obtaining the algebraic expression corresponding to each of the
diagrams are given in detail.

The diagrammatic many-body perturbation theory for open-shell systems is
outlined in the following section. The fourth-order diagrams are discussed in
detail in Sect. 3. This is followed by some concluding remarks.

2. Diagrammatic Many-body Perturbation Theory for Open-shell Systems

Hubat and Carsky [7] have given a detailed discussion of the many-body
perturbation theory for open-shell systems using a restricted Hartree—Fock
reference function. We shall follow much of the notation of these authors in the
present work.

The restricted Hartree-Fock operator, fz, can be written in the form
fr=f+U

where f is the Hartree-Fock operator given in Eq. (3) of Ref. [7] and U is a
one-electron operator which depends on the particular electronic configuration
under consideration. Huba& and Carsky [7] give the definition of U. When a
diagrammatic perturbation expansion for the correlation energy of an open-shell
system is made the one-electron operator U leads to diagrams with insertions
of the type shown in Fig. 1. A complete set of diagrams of this type through
third-order using the diagrammatic conventions of Refs. [3, 5] has been given
in [3].
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Type B Fig. 1. One-electron insertions
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Since the electronic hamiltonian is hermitian, its energy eigenvalue is real. The
sum of all terms of a given order in the perturbative energy expansion is also
real. However, the energies corresponding to individual diagrams are not
necessarily real if complex one-electron functions are used. In this case, a diagram
is always accompanied by its complex conjugate to give a sum that is real. This
situation arises in fourth-order. Diagrammatically, the process of complex conju-
gation can be accomplished by (1) rotating the diagram by 180° about an axis
parallel to the interaction lines, and (2) changing the direction of all the arrows.
This relation between diagrams will be expressed in the following manner

X =c(Y).

Diagram X is the complex conjugate of diagram Y. If X = ¢ (X) then the diagram
is equal to its complex conjugate and is therefore real. If not, the final diagram
will be identical to some other diagram, which is equal to the complex conjugate
of the original diagram. If real orbitals are used, each diagram is real even if its
complex conjugate diagram has a different appearance. Complex conjugation
relations between diagrams significantly reduce the number of algebraic
expressions which have to be considered in order to evaluate the energy through
a given order.

A further reduction in the number of algebraic expressions required to evaluate
the energy to a given order can be obtained if the time-reversal symmetry of
the diagrams is exploited. The time-reversal operation will be represented as
follows

X=¢Y).

If diagram Y is rotated by 180° about an axis parallel to the interaction lines
diagram X is obtained. This changes all hole lines into particle lines and vice
versa. It suffices to present only one of the expressions for two diagrams which
are related by time-reversal since the other is obtained by interchanging hole
and particle index designations, reordering the numerator factors, and changing
the sign of each denominator factor. It should be noted that two diagrams which
arerelated by time-reversal are not equal; they are distinct and must be separately
evaluated. Nevertheless, this symmetry property can be exploited in computer
programs [9].

In this paper, we shall use the following notation for integrals:
(a) matrix elements of the one-electron operator U will be denoted by

Upg = (| U|¢q)

where ¢ denotes a one-electron state function;
(b) antisymmetrized two-electron integrals will be written:

Tpus = j dry j dry & () (r)rit (8, (r)bs (r2) — 4 ()b (72))

where r;, is the electron-electron separation.
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Fig, 2. Fourth-order energy diagrams which involve a single one-electron insertion of type A
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The denominator factors which arise in the perturbation expressions for the
energy may be written in terms of the one-electron orbital energies, e,, as

Dijk...abc... :ei+e]'+ek+' ttT€g ey €

3. Fourth-order Energy Diagrams

In fourth-order of the perturbation expansion for the electronic energy, diagrams
can arise which involve a single one-electron insertion, two, three or four
one-electron insertions. Fourth-order diagrams which involve no one-electron
insertions at all are fully discussed elsewhere [5]. It is useful to classify the
fourth-order diagrams according to the number of one-electron insertions. The
diagrams can be further classified according to the type of insertion designated
by A and B in Fig. 1.

There are 48 diagrams which contain a single one-electron insertion of type A.
These diagrams are shown in Fig. 2. The first eight diagrams involve only
doubly-excited intermediate states whereas diagrams (9) to (16) involve singly-,
doubly- and triply-excited states. Diagrams (17) to (24) involve doubly- and
triply-excited states, diagrams (25) to (40) involve singly- and doubly-excited
intermediate states, and diagrams (41) to (48) involve only doubly-excited states.
The first diagram shown in Fig. 2 corresponds to the following algebraic
expression

_ Z IijabIkbic UadIdckj
ik abed DijapDixacDikca

Similar expressions for the remaining diagrams in Fig. 2 can be obtained using
the standard rules [3, 5].

In Fig. 3 the remaining 24 diagrams which arise in fourth-order and which
involve a single one-electron insertion of type B are displayed. The first 8
diagrams involve singly- and doubly-excited intermediate states whereas the
remaining diagrams in Fig. 3 involve a triply-excited intermediate state together
with a singly-excited and/or doubly-excited states. The first diagram in Fig. 3
gives rise to the following algebraic expression

_l Z z IijabIkbi]'Ialkocl
2yt abe  DijapDiaDic

whereas diagram (9), the first to involve a triply-excited intermediate state, leads
to the following expression

1 Ty Ii}'abIklicIabijcl'
2 ijxt abe Dijap Dijkabe Dic
The remaining expressions arising from the diagrams in Fig. 3 can be readily
obtained by applying the standard rules [3, 5].

There are 70 diagrams which involve two one-electron insertions: 58 of these
contain insertions of type A and the remainder insertions of type B. These
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Fig. 3. Fourth-order energy diagrams which involve a single one-electron insertion of type B
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Fig. 4. Fourth-order energy diagrams which involve two one-electron insertions of type A
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Fig. 4. (cont.)

diagrams are shown in Figs. 4 and 5, respectively. The first 50 diagrams shown
in Fig. 4 involve only singly-excited and doubly-excited intermediate states;
diagrams (17) to (20) involve doubly-excited states only. The last eight diagrams
given in Fig. 4 involve triply-excited intermediate states as well as singly- and/or
doubly-excited states. It should be noted that whereas the diagrams which involve
a single one-electron insertion give rise to expressions which contain a summation
over seven indices, the diagrams which involve two one-electron insertions give
rise to expressions which contain a summation over six indices. For example,
the expression corresponding to the first diagram shown in Fig. 4 is

—Z Z Ii]'abIkbicUakUci.
ijk abc DijabD]'kacD]'c

The twelve diagrams which contain two one-electron insertions of type B are
displayed in Fig. 5. Typical expressions corresponding to these diagrams are:

(1) diagram (5) which involves singly-, doubly- and triply-excited intermediate
states

+Z Z IijabUkcchijai
ijk abc DijabDijkabcDia
(2) diagram (9) which involves doubly- and triply-excited intermediate states

+ Z Z Iijab Ukc Uaichkj
ijk abc DijabDijkabcDjkbc
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Fig. 5. Fourth-order energy diagrams which
involve two one-electron insertions of type B

T Q;—_O

o "




354 S. Wilson

O NS NN .0
<> s _i:‘: T

(2) (4)

% SEVOEISE

(5)

*——— - o — — ~—— >
D) EDEN G
GOEOE0ED
— — > _ — =) o — — - o—— — O

(2) (19) (11) (12)
—— -0 - -0 *~———-- o~ ———;
.- @ —_—— _—— §:> - ___éi:}
-——— - —— - ~——®
o————O 0——-~Q - - -0 -———--0
(13) (14) (15) (1%)
-—--® - -0 - ———; - ———-
Gy Gy 0 0
L0000

an (1) (12) (29)
-——-0 -—- -9 -—--® ————e
S e - —_— -
O D NS S,
——=--0 ——--0 ——— -
(21) (22) (»2) (24)

Fig. 6. Fourth-order energy diagrams which involve three one-electron insertions
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(3) diagram (11) which involves only singly-excited states

+Z Z U;Iaglk;;chk.
ijk abc ial/jp Ll kc

The 24 diagrams which contain three one-electron insertions are given in Fig.
6. Each of these diagrams contain two insertions of type A and one insertion
of type B. The diagrams shown in Fig. 6 involve only singly- and doubly-excited
intermediate states. The first diagram corresponds to the algebraic expression

_ Z Z IijabUbjUkank
ijkc ab DijabDiaDka '

Expressions corresponding to the remaining diagrams may be obtained by
application of the standard rules [3,5]. Each of the expressions contains a
summation over five indices.

The final set of diagrams, shown in Fig. 7, involve four one-electron insertions.
We give the algebraic expression corresponding to the first

l]ia l]jiUijak
+ e et
i]z":c % DiaDjaDka

and the fifth of these
-yy UiaUppUpiUy;
if ab DiaDijabDfa
as typical examples. Each expression involve a summation over four indices.
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Table 1. Characteristics of fourth-order energy diagrams which involve a single one-
electron insertion of type A

D (par) np, p ny, (equ) ny, (equ) HD) c(d)
1) (222) 3 4 0 0 (8) 3)
) (222) 4 3 2 0 (7 4)
(3) 222) 3 4 0 0 (6) 1)
4) (222) 4 3 2 0 (5) 2)
(5) (222) 3 4 0 2 ) N
(6) (222) 4 3 0 0 (3) (8)
@) (222) 3 4 0 2 ) 5)
8 222y 4 3 0 0 (1) (6)
9) (231) 3 4 1 1 (16) 11

(10 (231) 4 3 0 0 (15) (12)

(11) (132) 3 4 1 1 (14) 9

(12) (132) 4 3 0 0 (13) (10

(13) (231) 3 4 0 0 (12) (15)

(14) (231) 4 3 1 1 11 (16)

(15) (132) 3 4 0 0 (10) (13)

(16) (132) 4 3 1 1 9) (14)

a7 (232) 3 4 0 0 (24) (19)

(18) (232) 4 3 1 1 (23) (20)

(19) (232) 3 4 0 0 (22) amn

(20) (232) 4 3 1 1 (21) (18)

(21) (232) 3 4 1 1 (20 (23)

(22) (232) 4 3 0 0 (19) (24)

(23) (232) 3 4 1 1 (18) (21)

(24) (232) 4 3 0 0 amn (22)

(25) 221y 4 3 0 0 (32) 27

(26) (221) 5 2 2 0 (31) 270

2N (122) 4 3 0 0 (30) (25)

(28) (122) 5 2 2 0 (29 (26)

29) (221) 2 5 0 2 (28) (31)

(30) (221) 3 4 0 0 @7 (32)

(31) 122y 2 5 0 2 (26) (29)

(32) (122) 3 4 0 0 (25) (30

(33) (221) 3 4 1 1 (40) (35)

(34) 221y 4 3 0 0 (39) (36)

(35) (122) 3 4 1 1 (38) (33)

(36) 122y 4 3 0 0 (37 (34)

(37 (221) 3 4 0 0 (36) (39)

(38) (221) 4 3 1 1 (35) (40)

(39) (122) 3 4 0 0 (34) (37

(40) 122y 4 3 1 1 (33) (38)

41) (222) 4 3 0 0 43) (43)

42) (222) 5 2 1 1 (47) (44)

(43) (222) 4 3 0 0 (46) {41)

(44) (222) 5 2 1 1 (45) (42)

(45) 222y 2 5 1 1 (44) @7

(46) (222) 3 4 0 0 (43) (48)

47 (222) 2 5 1 1 42) (45)

(48) (222) 3 4 0 0 (41) (46)
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In Tables 1-6, a summary of the properties of the diagrams given in Figs. 2-7
is given. In each of these Tables the following quantities are given:

(1) (pqr) denotes the levels of excitation which are present in the diagram D.
Diagram (1) of Fig. 2 involves only doubly-excited intermediate states whereas
diagram (1) of Fig. 5 involves one doubly-excited state and two singly-excited
intermediate states.

(2) n, and n, are the number of hole lines and rnumber of particle lines, respec-
tively, in each of the diagrams. n;,(equ) and n,(equ) are the number of equivalent
pairs of hole lines and equivalent pairs of particle lines, respectively, in the
diagram D.

(3) t(D) is the diagram which is related by time-reversal symmetry to diagram
D. ¢(D) is the diagram related to diagram D by complex conjugation; D and
c(D) give equal contributions to the energy of real orbitals are employed and
only one of them actually has to be evaluated. As noted in the previous section
time-reversal symmetry and complex conjugation relations significantly reduce
the number of algebraic expressions which have to be written down.

Table 2. Characteristics of fourth-order energy diagrams which involve a single one-
electron insertion of type B

D {(par) iy n, ny, (equ) ny, (equ) t(D) c(D)
1) @11) 4 3 1 0 (4) 3)
@) 211 3 4 0 1 3) (4)
3) (112) 4 3 1 0 ) (1)
(4) 112) 3 4 0 1 (1) 2
(5) (212) 4 3 1 0 (8) )
(6) 212) 3 4 0 1 7 (8)
0] (212) 4 3 1 0 6) (5)
(8) (212) 3 4 0 1 (5) (6)
9) (231) 4 3 0 1 (12) an

(10) (231) 3 4 1 0 (1 (12)

(11) (132) 4 3 0 1 (10) 9)

(12) (132) 3 4 1 0 () (10)

(13) (232) 4 3 1 0 (16) (15)

(14) (232) 3 4 0 1 (15) (16)

(15) 232) 4 3 1 0 (14) (13)

(16) (232) 3 4 0 1 (13) (14)

a7 (231) 4 3 1 0 (20) (19)

(18) (231) 3 4 0 1 (19) 20)

(19) (132) 4 3 1 0 (18) an

(20) (132) 3 4 0 1 a7 (18)

21) (232) 4 3 0 1 24) 23)

(22) (232) 3 4 1 0 (23) (24)

(23) (232) 4 3 0 1 22) 2n

24) (232) 3 4 1 0 21) 22)
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Table 3. Characteristics of fourth-order energy diagrams which involve two one-electron
insertions of type A

D (par) ny, Ay ny, (equ) n,(equ) HD) (D)
(1) 221y 3 3 0 0 (8) (3)
(2) (221) 2 4 0 1 (N 4)
(3) 122y 3 3 0 0 (6) 1
(4) 122y 2 4 0 1 (5) )
(5) (221) 4 2 1 0 o)) @)
(6) 221y 3 3 0 0 (3) (8)
(7) (122) 4 2 1 0 2 (5)
8 (122) 3 3 0 0 n (6)
) (221) 3 3 0 1 (16) 11

(10) 21y 2 4 0 0 (15) (12)

(11 (122) 3 3 0 1 (14) )

(12) (122) 2 4 0 0 (13) (10)

(13) (221) 4 2 0 0 (12) (15)

(14) (221) 3 3 1 0 11 (16)

(15) (122) 4 2 0 0 (10 (13)

(16) (122) 3 3 1 0 9) (14)

17 (222) 3 3 0 0 (17) (19)

(18) (222) 2 4 1 0 (20) (18)

(19) (222) 3 3 0 0 (19) a7

(20) (222) 4 2 0 1 (18) (20

PX8) (121) 3 3 0 0 21 (23)

(22) 121y 2 4 0 1 (24) (22)

(23) (121) 3 3 0 0 (23) 1)

(24) 121y 4 2 1 0 (22) (24)

(25) (211) 4 2 0 0 (28) (27)

(26) 11 2 4 0 1 27 (28)

(27 (112) 4 2 1 0 (26) (25)

(28) (112) 2 4 0 1 (25) (26)

(29) (221) 4 2 0 0 (32) (31)

(30) (221) 2 4 0 0 (31) (32)

(31) (122) 4 2 0 0 (30) (29)

(32) (122) 2 4 0 0 (29) (30)

(33) (222) 4 2 0 1 (34) (33)

(34) (222) 2 4 1 0 “(33) (34)

(35) 121y 4 2 1 0 (36) (35)

(36) 121y 2 4 0 1 (35) (36)

37 211y 3 3 1 0 (40) (39)

(38) 211y 3 3 0 1 (39) (40)

(39) (112) 3 3 1 0 (38) (37)

(40) (112) 3 3 0 1 (37 (38)

(41) (221) 3 3 0 1 (44) (43)

(42) (221) 3 3 1 0 (43) (44)

(43) (122) 3 3 0 1 (42) 41)

(44) (122) 3 3 1 0 (41) (42)

(45) 121y 3 3 1 0 (46) (45)

(46) 121y 3 3 0 1 (45) (46)

@7 (221) 3 3 0 0 (50 49

(48) 221y 3 3 0 0 (49) (50)

{49) (122) 3 3 0 0 (48) (47)
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Table 3. (cont.)

D (par) Ay, np ny, (equ) n, (equ) t(D) c(D)
(50) (122) 3 3 0 0 (47) (48)
(51) (231) .3 3 1 0 (54) (53)
(52) (231) 3 3 0 1 (53) (54)
(53) (132) 3 3 1 0 (52) (51)
(54) (132) 3 3 0 1 (51) (52)
(55) (232) 3 3 0 1 (56) (55)
(56) (232) 3 3 1 0 (55) (56)
87 (131) 3 3 0 1 (58) (57)
(58) (131) 3 3 1 0 (57) (58)

4, Concluding Remarks

There are 209 principal Goldstone diagrams in fourth-order when open-shell
systems are treated in zero-order by the restricted Hartree-Fock approximation.
The restricted Hartree—Fock approach is preferable to the unrestricted Hartree—
Fock method [10] for obtaining a zero-order wave function since the former
approach ensures that the wave function is an eigenfunction of S*, where S is
the operator associated with the total spin. 39 of these 211 diagrams contain no
one-electron insertions and also arise in the closed-shell case [5]. The remaining
172 diagrams, all of which contain one-electron insertions, are given in Figs.
2-7 of the present paper. 72 of these diagrams contain a single one-electron
insertion and give rise to 7 other Goldstone diagrams related %~ exchange of
electrons. 70 diagrams contain two one-electron insertions and give rise to 3
other Goldstone diagrams by electron exchange. The 24 diagrams which contain
three one-electron insertions each lead to one other Goldstone diagram. Finally,
there are 6 Goldstone diagrams which have four one-electron insertions.

Table 4. Characteristics of fourth-order energy diagrams which involve two one-electron
insertions of type B

D (par) np, iy ny (equ) np(equ) t(D) c(D)
(1) (211) 3 3 0 0 2) 2)
2) (112) 3 3 0 0 o)) 1)
(3) (221) 3 3 0 0 ) o)
@) (122) 3 3 0 0 3) 3)
(5) (231) 3 3 0 0 (6) 6)
(6) (132) 3 3 0 0 (5) 5)
(7 (221) 3 3 0 0 (8) 8)
(8) (122) 3 3 0 0 (7 (7
9) (232) 3 3 0 0 ) ()

(10) (212) 3 3 0 0 (10) (10)

(11) a1y 3 3 0 0 11 11)

(12) (131) 3 3 0 0 (12) (12)
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Table 5. Characteristics of fourth-order energy diagrams which involve three one-electron
insertions

D (par) ny iy ny, (equ) n,(equ) t(D) c(D)
1) (211) 3 2 0 0 4) 3)
@) Q1) 2 3 0 0 3) )
(3) (112) 3 2 0 0 2) 1)
) (112) 2 3 0 0 1) (2)
5) (221) 3 2 0 0 (8) )]
(6) (221) 2 3 0 0 (7 8)
N (122) 3 2 0 0 (6) (5)
(8) (122) 2 3 0 0 (5) 6)
9 (221) 3 2 0 0 (12) 11

(10) (221) 2 3 0 0 11 12)

11 (122) 3 2 0 0 (10) 9)

(12) (122) 2 3 0 0 ) (10)

(13) (111) 3 2 0 0 (16) (15)

(14) (111) 2 3 0 0 (15) (16)

(15) (111) 3 2 0 0 (14) (13)

(16) (111 2 3 0 0 (13) (14)

17) (121) 3 2 0 0 (20) (19)

(18) (121) 2 3 0 0 19) (20)

(19) (121) 3 2 0 0 (18) a7n

20) (121) 3 2 0 0 a7 (18)

(21) (121) 3 2 0 0 (24) (23)

(22) (121) 2 3 0 0 (23) 24)

(23) (121) 3 2 0 0 (22) 21

(24) (121) 2 3 0 0 21) (22)

Time reversal symmetry and complex conjugation symmetry can be used to
relate some of the diagrams. For example, in Fig. 7, diagrams (1) and (2) are
related by time reversal while diagrams (3) and (4) are related by complex
conjugation.

When a restricted Hartree-Fock reference function is used in a many-body
perturbation theory treatment of open-shell systems only 16 principal Goldstone
diagrams arise through third-order in the energy. Such calculations are, therefore,
open to a relatively simple interpretation. The addition of the fourth-order term

Table 6. Characteristics of fourth-order energy diagrams which involve four one-electron
insertions

D (pqr) Ry Hy Ry, (equ) n,(equ) HD) c(D)
(1) (111) 3 1 0 0 2) (1)
(2) (111) 1 3 0 0 (1) (2)
(3) (111) 2 2 0 0 (3) 4)
4) (111 2 2 0 0 4 (3)
5) (121) 2 2 0 0 (6) (5)
(6) (121) 2 2 0 0 (5) (6)
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complicates the situation considerably. Third-order calculations for open-shell
systems using a restricted Hartree—Fock reference function [7, 8] have been
shown to exhibit similar features to closed-shell studies [1, 3, 4]. For closed-shell
systems fourth-order terms, including those involving triply-excited and quad-
ruply-excited intermediate states, have been shown to be of some importance
[3, 6]. If fourth-order terms are also important in studies of open-shell systems,
then it is important that all diagrams through a given order be included in their
entirety [5].
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