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1. Introduction 

Many-body perturbation theory has been shown to form a simple yet accurate 
approach to the correlation problem in atoms and molecules [1-4]. For closed- 
shell systems calculations taken through third-order in the energy yield an 
accuracy comparable with that attained by other techniques currently used in 
quantum chemistry. The basis set truncation error is usually more significant 
than the error arising from the truncation of the perturbation series at third-order. 
However,  studies of closed-shell systems [5, 6] have demonstrated that the 
fourth-order  terms are o f t en"  chemically significant", having a, magnitude greater 
than 1 millihartree. Third-order many-body perturbation theory calculations for 
open-shell systems using a restricted Har t ree-Fock formalism [7, 8] have been 
shown to exhibit similar features to closed-shell studies. It is probable that, 
although the basis set truncation error is dominant, fourth-order  terms will be 
"chemically significant" in open-shell calculations. 
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In this paper the fourth-order diagrams which arise in open-shell calculations 
using a restricted Hartree-Fock reference function are given in full. We have 
used a method of permutational analysis in order to obtain this set of diagrams. 
A complete set of fourth-order diagrams for closed shell systems has been given 
previously [5]. In the present paper we shall only give the additional diagrams 
which arise when a restricted Hartree-Fock reference function is employed. The 
diagrammatic conventions employed are described in detail in Ref. [3] where 
the rules for obtaining the algebraic expression corresponding to each of the 
diagrams are given in detail. 

The diagrammatic many-body perturbation theory for open-shell systems is 
outlined in the following section. The fourth-order diagrams are discussed in 
detail in Sect. 3. This is followed by some concluding remarks. 

2. Diagrammatic Many-body Perturbation Theory for Open-shell Systems 
Huba~ and Cdrsky [7] have given a detailed discussion of the many-body 
perturbation theory for open-shell systems using a restricted Hartree-Fock 
reference function. We shall follow much of the notation of these authors in the 
present work. 

The restricted Hartree-Fock operator, fR, can be written in the form 

fR=f+U 
where f is the Hartree-Fock operator given in Eq. (3) of Ref. [7] and U is a 
one-electron operator which depends on the particular electronic configuration 
under consideration. Huba6 and (~firsky [7] give the definition of U. When a 
diagrammatic perturbation expansion for the correlation energy of an open-shell 
system is made the one-electron operator U leads to diagrams with insertions 
of the type shown in Fig. 1. A complete set of diagrams of this type through 
third-order using the diagrammatic conventions of Refs. [3, 5] has been given 
in [3]. 

l --  -4  ~ - - O  I-- ----O 

Type A @"'0 
Type B Fig. 1. One-electron insertions 
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Since the electronic hamiltonian is hermitian, its energy eigenvalue is real. The 
sum of all terms of a given order in the perturbative energy expansion is also 
real. However, the energies corresponding to individual diagrams are not 
necessarily real if complex one-electron functions are used. In this case, a diagram 
is always accompanied by its complex conjugate to give a sum that is real. This 
situation arises in fourth-order. Diagrammatically, the process of complex conju- 
gation can be accomplished by (1) rotating the diagram by 180 ~ about an axis 
parallel to the interaction lines, and (2) changing the direction of all the arrows. 
This relation between diagrams will be expressed in the following manner 

X=c(Y) .  
Diagram X is the complex conjugate of diagram Y. If X = c (X) then the diagram 
is equal to its complex conjugate and is therefore real. If not, the final diagram 
will be identical to some other diagram, which is equal to the complex conjugate 
of the original diagram. If real orbitals are used, each diagram is real even if its 
complex conjugate diagram has a different appearance. Complex conjugation 
relations between diagrams significantly reduce the number of algebraic 
expressions which have to be considered in order to evaluate the energy through 
a given order. 

A further reduction in the number of algebraic expressions required to evaluate 
the energy to a given order can be obtained if the time-reversal symmetry of 
the diagrams is exploited. The time-reversal operation will be represented as 
follows 

X = t(Y). 

If diagram Y is rotated by 180 ~ about an axis parallel to the interaction lines 
diagram X is obtained. This changes all hole lines into particle lines and vice 
versa. It suffices to present only one of the expressions for two diagrams which 
are related by time-reversal since the other is obtained by interchanging hole 
and particle index designations, reordering the numerator factors, and changing 
the sign of each denominator factor. It should be noted that two diagrams which 
are related by time-reversal are not equal; they are distinct and must be separately 
evaluated. Nevertheless, this symmetry property can be exploited in computer 
programs [9]. 

In this paper, we shall use the following notation for integrals: 
(a) matrix elements of the one-electron operator U will be denoted by 

Upq = (6pl UI6q) 

where ~ denotes a one-electron state function; 
(b) antisymmetrized two-electron integrals will be written: 

]pqrs = f drl f drz d~*e (rl)q~*q (r2)r,-~ (~),(rl)d),(rz)-cks(r,)qbr(r2)) 

where rx2 is the electron-electron separation. 
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O--()O'-O 
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Fig. 2. Fourth-order energy diagrams which involve a single one-electron insertion of type A 
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The denominator factors which arise in the perturbation expressions for the 
energy may be written in terms of the one-electron orbital energies, ep, as 

V ijk...abc... = ei + e j  + ek  + . . . .  ea --  eb  --  ec . . . .  

3. Fourth-order Energy Diagrams 

In fourth-order of the perturbation expansion for the electronic energy, diagrams 
can arise which involve a single one-electron insertion, two, three or four 
one-electron insertions. Fourth-order diagrams which involve no one-electron 
insertions at all are fully discussed elsewhere [5]. It is useful to classify the 
fourth-order diagrams according to the number of one-electron insertions. The 
diagrams can be further classified according to the type of insertion designated 
by A and B in Fig. 1. 

There are 48 diagrams which contain a single one-electron insertion of type A. 
These diagrams are shown in Fig. 2. The first eight diagrams involve only 
doubly-excited intermediate states whereas diagrams (9) to (16) involve singly-, 
doubly- and triply-excited states. Diagrams (17) to (24) involve doubly- and 
triply-excited states, diagrams (25) to (40) involve singly- and doubly-excited 
intermediate states, and diagrams (41) to (48) involve only doubly-excited states. 
The first diagram shown in Fig. 2 corresponds to the following algebraic 
expression 

-- ~ ~. IijabIkbicUadldckl 

ilk abcd Dqabl)lkacDjkcd" 

Similar expressions for the remaining diagrams in Fig. 2 can be obtained using 
the standard rules [3, 5]. 

In Fig. 3 the remaining 24 diagrams which arise in fourth-order and which 
involve a single one-electron insertion of type B are displayed. The first 8 
diagrams involve singly- and doubly-excited intermediate states whereas the 
remaining diagrams in Fig. 3 involve a triply-excited intermediate state together 
with a singly-excited and/or doubly-excited states. The first diagram in Fig. 3 
gives rise to the following algebraic expression 

_ !  E Z IijabZkbij[a,kcUc, 

2 ijkl abc VqabDkaDlc 

whereas diagram (9), the first to involve a triply-excited intermediate state, leads 
to the following expression 

1 ~ ~ I i i a b l k U J a b k i U d  
- - L L ~ .  

2 ijkl abc DqabDqkabcDlc 

The remaining expressions arising from the diagrams in Fig. 3 can be readily 
obtained by applying the standard rules [3, 5]. 

There are 70 diagrams which involve two one-electron insertions: 58 of these 
contain insertions of type A and the remainder insertions of type B. These 
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(47) 

(51) 

(48) (49) 

(55) (56) (:7) 
Fig. 4. (cont . )  

(5~) 

diagrams are shown in Figs. 4 and 5, respectively. The first 50 diagrams shown 
in Fig. 4 involve only singly-excited and doubly-excited intermediate states; 
diagrams (17) to (20) involve doubly-excited states only. The last eight diagrams 
given in Fig. 4 involve triply-excited intermediate states as well as singly- and/or 
doubly-excited states. It should be noted that whereas the diagrams which involve 
a single one-electron insertion give rise to expressions which contain a summation 
over seven indices, the diagrams which involve two one-electron insertions give 
rise to expressions which contain a summation over six indices. For example, 
the expression corresponding to the first diagram shown in Fig. 4 is 

ijk abc 

The twelve diagrams which contain two one-electron insertions of type B are 
displayed in Fig. 5. Typical expressions corresponding to these diagrams are: 

(1) diagram (5) which involves singly-, doubly- and triply-excited intermediate 
states 

- -  I q a b U k c I c b k j U a i  

+Z c iik 

(2) diagram (9) which involves doubly- and triply-excited intermediate states 

- -  [ i ] a b U k c U a i ~ c b k ]  

ilk 
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Fig. 5. Fourth-order energy diagrams which 
involve two one-electron insertions of type B 
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(3) diagram (11) which involves only singly-excited states 

UJ~jiJkb~jU~k 
ijk abc D i a D i b D k c  

The 24 diagrams which contain three one-electron insertions are given in Fig. 
6. Each of these diagrams contain two insertions of type A and one insertion 
of type B. The diagrams shown in Fig. 6 involve only singly- and doubly-excited 
intermediate states. The first diagram corresponds to the algebraic expression 

Ii~abUbjUkiUak 
DijabDiaDk~ qk ab 

Expressions corresponding to the remaining diagrams may be obtained by 
application of the standard rules [3, 5]. Each of the expressions contains a 
summation over five indices. 

The final set of diagrams, shown in Fig. 7, involve four one-electron insertions. 
We give the algebraic expression corresponding to the first 

UiaUjiUkjUak 
+ ~ Y, DiaDjaDk,~ a 

and the fifth of these 

U.,Uj~U~iUaj 
- ~ ~ Di,~Dij,~bDia 

as typical examples. Each expression involve a summation over four indices. 

-@ �9 

Fig. 7. Fourth-order energy diagrams which involve 
four one-electron insertions 
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Table 1. Characteristics of fourth-order energy diagrams which involve a single one- 
electron insertion of type A 

D (pqr) nh np n h (equ) np (equ) t(D) c(d) 

(1) (222) 3 4 0 0 (8) (3) 
(2) (222) 4 3 2 0 (7) (4) 
(3) (222) 3 4 0 0 (6) (1) 
(4) (222) 4 3 2 0 (5) (2) 
(5) (222) 3 4 0 2 (4) (7) 
(6) (222) 4 3 0 0 (3) (8) 
(7) (222) 3 4 0 2 (2) (5) 
(8) (222) 4 3 0 0 (1) (6) 
(9) (231) 3 4 1 1 (16) (11) 

(10) (231) 4 3 0 0 (15) (12) 
(11) (132) 3 4 1 1 (14) (9) 
(12) (132) 4 3 0 0 (13) (10) 
(13) (231) 3 4 0 0 (12) (15) 
(14) (231) 4 3 1 1 (11) (16) 
(15) (132) 3 4 0 0 (10) (13) 
(16) (132) 4 3 1 1 (9) (14) 
(17) (232) 3 4 0 0 (24) (19) 
(18) (232) 4 3 1 1 (23) (20) 
(19) (232) 3 4 0 0 (22) (17) 
(20) (232) 4 3 1 1 (21) (18) 
(21) (232) 3 4 1 1 (20) (23) 
(22) (232) 4 3 0 0 (19) (24) 
(23) (232) 3 4 1 1 (18) (21) 
(24) (232) 4 3 0 0 (17) (22) 
(25) (221) 4 3 0 0 (32) (27) 
(26) (221) 5 2 2 0 (31) (27) 
(27) (122) 4 3 0 0 (30) (25) 
(28) (122) 5 2 2 0 (29) (26) 
(29) (221) 2 5 0 2 (28) (31) 
(30) (221) 3 4 0 0 (27) (32) 
(31) (122) 2 5 , 0 2 (26) (29) 
(32) (122) 3 4 0 0 (25) (30) 
(33) (221) 3 4 1 1 (40) (35) 
(34) (221) 4 3 0 0 (39) (36) 
(35) (122) 3 4 1 1 (38) (33) 
(36) (122) 4 3 0 0 (37) (34) 
(37) (221) 3 4 0 0 (36) (39) 
(38) (221) 4 3 1 1 (35) (40) 
(39) (122) 3 4 0 0 (34) (37) 
(40) (122) 4 3 1 1 (33) (38) 
(41) (222) 4 3 0 0 (43) (43) 
(42) (222) 5 2 1 1 (47) (44) 
(43) (222) 4 3 0 0 (46) (41) 
(44) (222) 5 2 1 I (45) (42) 
(45) (222) 2 5 1 1 (44) (47) 
(46) (222) 3 4 0 0 (43) (48) 
(47) (222) 2 5 1 1 (42) (45) 
(48) (222) 3 4 0 0 (41) (46) 
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In Tables  1-6,  a summary  of the propert ies  of the diagrams given in Figs. 2 -7  
is given. In each of these Tables the following quantit ies are given: 

(1) (pqr) denotes  the levels of excitation which are present  in the d iagram D. 
D iag ram (1) of Fig. 2 involves only doubly-exci ted in termediate  states whereas  
d iagram (1) of Fig. 5 involves one  doubly-exci ted state and two singly-excited 
in termediate  states. 

(2) n h and np are the number  of hole lines and number  of particle lines, respec- 
tively, in each of the diagrams, nh(equ) and np(equ) are the number  of equivalent  
pairs of hole lines and equivalent  pairs of particle lines, respectively, in the 
d iagram D. 

(3) t(D) is the diagram which is related by t ime-reversal  symmet ry  to d iagram 
D. c(D) is the diagram related to diagram D by complex  conjugat ion;  D and 
c(D) give equal contr ibut ions to the energy of real orbitals are employed  and 
only one  of them actually has to be evaluated.  As  noted in the previous section 
t ime-reversal  symmet ry  and complex conjugat ion relations significantly reduce  
the number  of algebraic expressions which have to be written down. 

Table 2. Characteristics of fourth-order energy diagrams which involve a single one- 
electron insertion of type B 

D (pqr) n h n p  n h (equ) np (equ) t(D) c(D) 

(1) (211) 4 3 1 0 (4) (3) 
(2) (211) 3 4 0 1 (3) (4) 
(3) (112) 4 3 1 0 (2) (1) 
(4) (112) 3 4 0 1 (1) (2) 
(5) (212) 4 3 1 0 (8) (7) 
(6) (212) 3 4 0 1 (7) (8) 
(7) (212) 4 3 1 0 (6) (5) 
(8) (212) 3 4 0 1 (5) (6) 
(9) (231) 4 3 0 1 (12) (11) 

(10) (231) 3 4 1 0 (11) (12) 
(11) (132) 4 3 0 1 (10) (9) 
(12) (132) 3 4 1 0 (9) (10) 
(13) (232) 4 3 1 0 (16) (15) 
(14) (232) 3 4 0 1 (15) (16) 
(15) (232) 4 3 1 0 (14) (13) 
(16) (232) 3 4 0 1 (13) (14) 
(17) (231) 4 3 1 0 (20) (19) 
(18) (231) 3 4 0 1 (19) (20) 
(19) (132) 4 3 1 0 (18) (17) 
(20) (132) 3 4 0 1 (17) (18) 
(21) (232) 4 3 0 1 (24) (23) 
(22) (232) 3 4 1 0 (23) (24) 
(23) (232) 4 3 0 1 (22) (21) 
(24) (232) 3 4 1 0 (21) (22) 
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Table 3. Characteristics of fourth-order energy diagrams which involve two one-electron 
insertions of type A 

D (pqr) nh np rlh (equ) np(equ) t(D) c(D) 

(1) (221) 3 3 0 0 (8) (3) 
(2) (221) 2 4 0 1 (7) (4) 
(3) (122) 3 3 0 0 (6) (1) 
(4) (122) 2 4 0 1 (5) (2) 
(5) (221) 4 2 1 0 (4) (7) 
(6) (221) 3 3 0 0 (3) (8) 
(7) (122) 4 2 1 0 (2) (5) 
(8) (122) 3 3 0 0 (1) (6) 
(9) (221) 3 3 0 1 (16) (11) 

(10) (221) 2 4 0 0 (15) (12) 
(11) (122) 3 3 0 1 (14) (9) 
(12) (122) 2 4 0 0 (13) (I0) 
(13) (221) 4 2 0 0 (!2) (15) 
(14) (221) 3 3 1 0 (11) (16) 
(15) (122) 4 2 0 0 (10) (13) 
(16) (122) 3 3 1 0 (9) (14) 
(17) (222) 3 3 0 0 (17) (19) 
(18) (222) 2 4 1 0 (20) (18) 
(19) (222) 3 3 0 0 (19) (17) 
(20) (222) 4 2 0 1 (18) (20) 
(21) (121) 3 3 0 0 (21) (23) 
(22) (121) 2 4 0 1 (24) (22) 
(23) (121) 3 3 0 0 (23) (21) 
(24) (121) 4 2 1 0 (22) (24) 
(25) (211) 4 2 0 0 (28) (27) 
(26) (21!) 2 4 0 1 (27) (28) 
(27) (I12) 4 2 1 0 (26) (25) 
(28) (112) 2 4 0 1 (25) (26) 
(29) (221) 4 2 0 0 (32) (31) 
(30) (221) 2 -4 0 0 (31) (32) 
(31) (122) 4 2 0 0 (30) (29) 
(32) (122) 2 4 0 0 (29) (30) 
(33) (222) 4 2 0 1 (34) (33) 
(34) (222) 2 4 1 0 : (33) (34) 
(35) (121) 4 2 1 0 (36) (35) 
(36) (121) 2 4 0 1 (35) (36) 
(37) (211) 3 3 1 0 (40) (39) 
(38) (211) 3 3 0 1 (39) (40) 
(39) (112) 3 3 1 0 (38) (37) 
(40) (112) 3 3 0 1 (37) (38) 
(41) (221) 3 3 0 1 (44) (43) 
(42) (221) 3 3 1 0 (43) (44) 
(43) (122) 3 3 0 1 (42) (41) 
(44) (122) 3 3 1 0 (41) (42) 
(45) (121) 3 3 1 0 (46) (45) 
(46) (121) 3 3 0 1 (45) (46) 
(47) (221) 3 3 0 0 (50) (49) 
(48) (221) 3 3 0 0 (49) (50) 
(49) (122) 3 3 0 0 (48) (47) 
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D (pqr) nh  n v n h (equ) np(equ) t(D) c(D) 

(50) (122) 3 3 0 0 (47) (48) 
(51) (231) .3 3 1 0 (54) (53) 
(52) (231) 3 3 0 1 (53) (54) 
(53) (132) 3 3 1 0 (52) (51) 
(54) (132) 3 3 0 1 (51) (52) 
(55) (232) 3 3 0 1 (56) (55) 
(56) (232) 3 3 1 0 (55) (56) 
(57) (131) 3 3 0 1 (58) (57) 
(58) (131) 3 3 1 0 (57) (58) 

4. Concluding Remarks 

There  are 209 principal Golds tone  diagrams in four th -order  when open-shel l  
systems are t reated in ze ro -o rde r  by the restricted H a r t r e e - F o c k  approximat ion,  
The  restr icted H a r t r e e - F o c k  approach  is preferable  to the unrestr icted H a r t r e e -  
Fock  me thod  [10] for obtaining a ze ro-order  wave funct ion since the fo rmer  
approach  ensures that  the wave function is an eigenfunct ion of S 2, where  S is 
the opera to r  associated with the total spin. 39 of these 211 diagrams contain no 
one-e lec t ron  insertions and also arise in the closed-shell  case [5]. The  remaining 
172 diagrams, all of which contain one-e lec t ron  insertions, are given in Figs. 
2 -7  of the present  paper.  72 of these diagrams contain a single one-e lec t ron  
insertion and give rise to 7 o ther  Golds tone  diagrams related b=~ exchange of  
electrons. 70 diagrams contain two one-e lec t ron  insertions and give rise to 3 
o ther  Golds tone  diagrams by electron exchange.  The  24 diagrams which contain 
three one-e lec t ron  insertions each lead to one  other  Golds tone  diagram. Finally, 
there are 6 Golds tone  diagrams which have four  one-e lec t ron  insertions. 

Table 4. Characteristics of fourth-order energy diagrams which involve two one-electron 
insertions of type B 

D (pqr) n h np n h (equ) np(equ) t(D) c(D) 

(1) (211) 3 3 0 0 (2) (2) 
(2) (112) 3 3 0 0 (i) (1) 
(3) (221) 3 3 0 0 (4) (4) 
(4) (122) 3 3 0 0 (3) (3) 
(5) (231) 3 3 0 0 (6) (6) 
(6) (132) 3 3 0 0 (5) (5) 
(7) (221) 3 3 0 0 (8) (8) 
(8) (122) 3 3 0 0 (7) (7) 
(9) (232) 3 3 0 0 (9) (9) 

(10) (212) 3 3 0 0 (10) (10) 
(11) (111) 3 3 0 0 (11) (11) 
(12) (131) 3 3 0 0 (12) (12) 
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Table 5. Characteristics of fourth-order energy diagrams which involve three one-electron 
insertions 

D (pqr) rt h np n h (equ) np(equ) t(D) c(D) 

(1) (211) 3 2 0 0 (4) (3) 
(2) (211) 2 3 0 0 (3) (4) 
(3) (112) 3 2 0 0 (2) (1) 
(4) (112) 2 3 0 0 (1) (2) 
(5) (221) 3 2 0 0 (8) (7) 
(6) (221) 2 3 0 0 (7) (8) 
(7) (122) 3 2 0 0 (6) (5) 
(8) (122) 2 3 0 0 (5) (6) 
(9) (221) 3 2 0 0 (12) (11) 

(10) (221) 2 3 0 0 (11) (12) 
(11) (122) 3 2 0 0 (10) (9) 
(12) (122) 2 3 0 0 (9) (10) 
(13) (111) 3 2 0 0 (16) (15) 
(14) (111) 2 3 0 0 (15) (16) 
(15) (111) 3 2 0 0 (14) (13) 
(16) (111) 2 3 0 0 (13) (14) 
(17) (121) 3 2 0 0 (20) (19) 
(18) (121) 2 3 0 0 (19) (20) 
(19) (121) 3 2 0 0 (18) (17) 
(20) (121) 3 2 0 0 (17) (18) 
(21) (121) 3 2 0 0 (24) (23) 
(22) (121) 2 3 0 0 (23) (24) 
(23) (121) 3 2 0 0 (22) (21) 
(24) (121) 2 3 0 0 (21) (22) 

T ime  reversal  symmet ry  and  complex con juga t ion  symmet ry  can be used to 
relate  some Of the diagrams.  For  example,  in Fig. 7, d iagrams (1) and  (2) are 

re la ted  by t ime reversal  while diagrams (3) and  (4) are re la ted  by complex 

conjuga t ion .  

W h e n  a restr icted H a r t r e e - F o c k  reference  func t ion  is used in a m a n y - b o d y  
pe r tu rba t i on  theory  t r e a tmen t  of open-she l l  systems only  16 pr incipal  Go lds tone  
diagrams arise th rough th i rd -o rder  in the energy.  Such calculat ions are, therefore,  
open  to a relat ively s imple in te rpre ta t ion .  The  addi t ion  of the four th -o rder  te rm 

Table 6. Characteristics of fourth-order energy diagrams which involve four one-electron 
insertions 

D (pqr) nh np nh (equ) np(equ) t(D) c(D) 

(1) (111) 3 1 0 0 (2) (1) 
(2) (111) 1 3 0 0 (1) (2) 
(3) (111) 2 2 0 0 (3) (4) 
(4) (111) 2 2 0 0 (4) (3) 
(5) (121) 2 2 0 0 (6) (5) 
(6) (121) 2 2 0 0 (5) (6) 
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compl ica tes  the  s i tua t ion  cons iderab ly .  T h i r d - o r d e r  ca lcula t ions  for  ope n - she l l  
sys tems using a r es t r i c t ed  H a r t r e e - F o c k  r e f e rence  funct ion  [7, 8] have  been  
shown to exhib i t  s imi lar  fea tu res  to c losed-she l l  s tudies  [ I ,  3, 4]. F o r  c losed-she l l  
sys tems f o u r t h - o r d e r  t e rms ,  inc luding  those  involving t r ip ly -exc i t ed  and  q u a d -  
rup ly -exc i t ed  i n t e r m e d i a t e  s tates ,  have been  shown to be  of some  i m p o r t a n c e  
[3, 6]. If f o u r t h - o r d e r  t e rms  are  also i m p o r t a n t  in s tudies  of ope n - she l l  sys tems,  
then  it is i m p o r t a n t  tha t  all d i ag rams  th rough  a given o r d e r  be  inc luded  in the i r  
en t i r e ty  [5]. 
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